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Modeling Uncertainty

• uncertainty is a critical element of many decisions

• how do we model uncertainty?
• probability

• sometimes, the problem at hand is similar to some prototypical situations
• we will look at some such standard models
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Basics of Probability

• a central principle in decision making is that we can represent uncertainty
through the appropriate use of probability

• many uncertain events are quantitative (e.g. tomorrow’s max temperature)
• if not quantitative, we can introduce a quantitative variable:

• X = 1 if it rains
• X = 0 if it does not rain

• the set of probabilities associated with all possible outcomes = probability
distribution

• example:
• we denote the number of raisins in an oatmeal cookie as Y
• P(Y = 0) = 0.02
• P(Y = 1) = 0.05
• P(Y = 2) = 0.20
• etc

• all probabilities ina probability distribution sum up to 1
• uncertain quantities (e.g. number of raisins Y ) are called random variables
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Discrete Probability Distributions

• the uncertain quantity can assume a finite or countable number of possible values
• example:

• raisins in oatmeal cookie
• precipitation (yes/no)

• we describe it with
• probability mass function (PMF)
• cumulative distribution function (CDF)

the probability that a discrete random
variable Y is exactly equal to some value y

the probability that Y will take a value less
than or equal to some value y
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Expected value

• the expected value of a discrete random variable X is its probability-weighted
average

• also average, mean, µ

E(X) =
n∑

i=1

xi · P(X = x)

• best guess
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Variance and Standard Deviation

• variance = sum of squares of deviations from mean
• also Var(X) or σ2X

Var(X) =
n∑

i=1

[xi − E(X)]2 · P(X = x)

• standard deviation = square root of variance

• also σX

• best guess of how far the outcome might lie from E(X)

• a large variance or standard deviation indicates that the outcome is highly variable
and hard to predict
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Continuous Probability Distributions

• the uncertain quantity (represented by the random variable X) can take a value
within a range (as opposed to discrete distributions)

• example
• tomorrow max temperature

• we typically speak about interval probabilities P(a ≤ Y ≤ b)
• we describe it with

• probability density function (PDF)
• cumulative distribution function (CDF)
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Statistical Moments

• expected value

E(X) =
∫ x+

x−
xf (x)dx

• variance

Var(X) = σ2X =
∫ x+

x−
[x − E(X)]2f (x)dx
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Theoretical Probability Models

• sometimes, the problem at hand is similar to some prototypical situations
• theoretical probability models

• when we look at the nature of the uncertain event . . .
• . . . we can find a similar existing protoypical distribution

• we make a subjective assessment on which model could fit the nature of our
random variable

• it is important to have a good overview of the main distributions and their natural
applications

Marko Tkalčič, DSS-201718-04-ModelingUncertainty-1 12/25



Theoretical Probability Models

• sometimes, the problem at hand is similar to some prototypical situations
• theoretical probability models

• when we look at the nature of the uncertain event . . .
• . . . we can find a similar existing protoypical distribution

• we make a subjective assessment on which model could fit the nature of our
random variable

• it is important to have a good overview of the main distributions and their natural
applications

Marko Tkalčič, DSS-201718-04-ModelingUncertainty-1 12/25



Theoretical Probability Models

• sometimes, the problem at hand is similar to some prototypical situations
• theoretical probability models

• when we look at the nature of the uncertain event . . .
• . . . we can find a similar existing protoypical distribution

• we make a subjective assessment on which model could fit the nature of our
random variable

• it is important to have a good overview of the main distributions and their natural
applications

Marko Tkalčič, DSS-201718-04-ModelingUncertainty-1 12/25



Theoretical Probability Models

• sometimes, the problem at hand is similar to some prototypical situations
• theoretical probability models

• when we look at the nature of the uncertain event . . .
• . . . we can find a similar existing protoypical distribution

• we make a subjective assessment on which model could fit the nature of our
random variable

• it is important to have a good overview of the main distributions and their natural
applications

Marko Tkalčič, DSS-201718-04-ModelingUncertainty-1 12/25



Distributions

• there is A LOT of distributions
• we will cover the following distributions

• discrete
• binomial distribution
• Poisson distribution

• continuous
• exponential distribution
• normal distribution
• beta distributions

• for each distribution:
• typical example
• parameters
• shape
• no equations in this course
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Binomial Distribution

• discrete distribution
• example

• you are in a race for mayor of your hometown, and
• you wanted to find out how you were doing with the voters.
• you might take a sample and count the number of individuals who indicated a preference

for you
• in this situation, each voter interviewed can be either for you or not.

• Binomial distribution is applicable in cases where:
• outcomes are dichotomous: sequential, each can be only true/false
• constant probability p at each event (trial) the probability of true is always the same
• the outcome of each trial is independent of the previous ones
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Binomial Distribution

• parameters of the binomial distribution B(n, p) are
• n ∈ N0 — number of trials
• p ∈ [0, 1] — success probability in each trial

• when to use?
• The binomial distribution is frequently used to model the number of successes in a

sample of size n drawn with replacement from a population of size N.
• e.g. when having N voters, what is the chance that n will vote for you if the probability

of voting is p?
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Poisson distribution

• discrete distribution
• representing occurrences of a particular event over time or space
• example

• you are interested in the number of customers who arrive at a bank in one hour.
• this is an uncertain quantity; there could be none, one, two, three, etc.

• The Poisson distribution is an appropriate model if the following assumptions are
true.

• k is the number of times an event occurs in an interval and k can take values 0, 1, 2, . . . .
• The occurrence of one event does not affect the probability that a second event will

occur. That is, events occur independently.
• The rate at which events occur is constant. The rate cannot be higher in some intervals

and lower in other intervals.
• Two events cannot occur at exactly the same instant; instead, at each very small

sub-interval exactly one event either occurs or does not occur.
• The probability of an event in a small sub-interval is proportional to the length of the

sub-interval.
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Poisson distribution

• parameters of the distribution P(λ)
• λ > 0 real

• when to use?
• for modelling the number of times an event occurs in an interval of time or space.
• e.g. what is the chance that k people will walk into the bank between 10am and 11am?

x axis: k . . . number of occurrences
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Exponential distribution

• continuous distribution
• also known as negative exponential distribution
• related to the Poisson distribution

• describes the time between events in a Poisson process

• example:
• Poisson: number of arrivals in a time window
• exponential: time between arrivals

• has the same requirements as the Poisson distribution
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Exponential distribution

• parameters :
• λ > 0 real
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Normal Distribution

• continuous
• when uncertainty is due to several sources of uncertainty
• example:

• measurement errors are due to environmental conditions, equipment malfunctions, human
error, etc.

• central limit theorem:
• averages of samples of observations of random variables independently drawn from

independent distributions converge in distribution to the normal when the number of
observations is sufficiently large.
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Normal Distribution

• parameters of the N (µ, σ2)
• µ - mean
• σ2 > 0 - variance

• rules of thumb:
• P ≈ 0.68 that a normal random variable is within one standard deviation of the mean
• P ≈ 0.95 that it is within two standard deviations of the mean.
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Beta Distribution

• a family of continuous probability distributions defined on the interval [0, 1]
• applicable when a random variable is in a limited interval
• example:

• the proportion of people who will vote for candidate A
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Beta Distribution

• parameters of Beta(α, β)
• α > 0 shape
• β > 0 shape
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Quiz

Which distributions are good choices for the following examples of uncertainty

1. Educational and intelligence tests [normal]
2. In many market research studies, a fundamental issue is whether a potential

customer prefers one product to another [binomial]
3. How many defects are acceptable in a finished product? In some products, the

occurrence of defects, such as bubbles in glass or blemishes in cloth happens from
time to time. [Poisson, exponential]

4. How to provide adequate service (e.g. how many cashiers should be open) when
the arrival of customers is uncertain. [Poisson, exponential]
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